
B. liquid-Phase Activity Coefficients: Effect of Composition 

For isothermal phase equilibria, the liquid-phase 
activity coefficient depends on the liquid-phase composi­
tion and also on the total pressure. For effective thermo­
dynamic analysis and correlation of high-pressure vapor­
liquid equilibrium data, it is important to separate 
the effect of pressure from that of composition. For a 
binary system, it is useful, therefore, to define two 
adjusted activity coefficients independent of pressure 
(25) by: 
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where subscript 1 refers to the condensable and sub­
script 2 to the non condensable component. 

The fugacities, hand h, are those at the total pressure 
P of the system. The reference pressure P is arbitrary 
and is most conveniently set equal to zero. As shown 
elsewhere (25), the constant-pressure activity coefficients 
defined by Equations 18 and 19 satisfy th,.. isothermal, 
isobaric Gibbs-Duhem equation: 

Figure 2. Fugacity coefficients of metlw.ne in hydrogen at saturation 
(k12 = 0.03 obtained from second vinal coefficient data) 

As a result, the composition dependence of these activity 
coefficients can be represented by an integrated form of 
Equation 20 (for example, the van Laar equation or the 
Margules equation) as commonly used in low-pressure 
vapor-liquid equilibria. Through the exponential fac­
tors in Eq ua tions 18 and 19 (the Poyn ting correction), 
the effect of pressure is separated from the effect of com­
position, and as a result, interpretation and correlation 
of high-pressure phase-equilibrium data are very much 
facilitated (25). A technique for calculating partial 
molar volumes VlL and V2L , required in Equations 18 
and 19, is presented in Section C. 

The asterisk (*) in Equation 19 is a reminder that the 
unsymmetric convention has been used for normalization 
of activity coefficients. For sub critical component 1 
(the temperature T of the solution is well below the 
critical temperature TcJ, the standard-state fugacity is 
the fugacity of pure liquid 1 at the temperature of the 
solution and at the constant reference pressure P. 
For supercritical component 2 (the temperature T of the 
solution is near or above the critical temperature T c,) , 

the standard-state fugacity is its Henry's constant in 
solvent 1 at the temperature of the solution and at P. 
As a result, both activity coefficients approach unity 
as the liquid solution becomes infinitely dilute with 
respect to the light component: 

'Yl(P") -- 1 as Xl -- 1 (21) 
'Y2*(pr) __ 1 as X2 -- 0 (22) 

The unsymmetric convention of normalization has 
the advantage that it avoids the use of any ill-defined 
hypothetical liquid standard state for the non condensable 
supercritical component. It has been repeatedly found 
that no unique reference fugacity exists for such a hypo­
thetical liquid; for a noncondensable supercritical 
component, the hypothetical pure-liquid fugacities ob­
tained from vapor-liquid equilibria of that component 
in various solvents may differ considerably from each 
other. Ambiguity in the standard-state fugacity of a 
supercritical gas can be avoided by the use of the well­
defined and experimentally accessible Henry's constant 
(25). H 2(1)(pr) is given by: 

H 2(1)(P') = H 2(I) (P,' ~ dP ~
pr-", 
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where H 2(1) (P
,
') is evaluated by extrapolating to X2 = 0 

a plot ofln/2/x2 VS. X2. In Equation 23, Pl' is the satura­
tion (vapor) pressure of solvent 1 and V2'" is the liquid 
partial molar volume of component 2 infinitely dilute 
in solvent 1. 

Excess Gibbs energy. Following Scatchard (39), 
we define the excess Gibbs energy per mole of solution 
by 

(24) 
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Table I. Self-interaction Constants for Some Binary Systems 

a 22(1), 

r, Ib-mole/ 
System oR ft3 System 

Methane(2)- 259.7 0.425 Methane(2)-
ethane{1 ) 309.7 0.305 n-pentane( 1 ) 

359.7 0.182 contd. 
409.7 0.210 
459.7 0.333 Ethylene(2)-
509.7 0.680 ethane(l ) 

Methane(2)- 259.7 0.342 
propane(l) 309.7 0.322 

359.7 0.322 
409.7 0.355 Ethylene(2)-
459.7 0.415 acetylene( 1 ) 
491.7 0.462 
509.7 0.498 
559.7 0.593 Ethane(2)-
619.7 0.936 acetylene( 1 ) 

Methane(2)- 559.7 0.548 
n-pentane( 1 ) 

In view of the unsymmetric normalization, gE* vanishes 
at infinite dilution with respect to component 2 but not 
with respect to component 1; that is, 

gE* _ 0 as Xz - 0 

but (25) 

gE* ,e 0 as Xl - 0 

As defined here, the ideal solution (g E* = 0) is one 
where at constant temperature and pressure the fugacity 
of the light component is given by Henry's law and that 
of the heavy component by Raoult's law. In molecular 
terms this means that gE* is zero whenever the concen­
tration of component 2 in the liquid phase is sufficiently 
small to prevent molecules of component 2 from inter­
acting with one another. 

In a manner analogous to that used by Wohl (42), 
the excess Gibbs energy can be represented by summing 
interactions of molecules: 

gE* 
(26) 

where q, is the effective volume fraction 

q,z = X2q2 

Xlql + X2q2 

(27) 

where qt is the effective size of molecule i and where 
CX2Z(1) is the self-interaction constant of molecules 2 in 
the environment of molecules 1. In Equation 26 only 
two-body interactions are considered; higher terms are 
neglected to keep the number of adjustable parameters to 
a minimum. 
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a 22(1) , a 22(I) , 

r, Ib-mole/ r, Ib-mole/ 
OR 't3 System ° R ft3 

619.7 0.706 Ethane(2)- 259.7 0.066 
679.7 0.939 propane{1 ) 309.7 0.059 
739.7 1.230 359.7 0.051 

409.7 0.043 
359.7 0.075 459.7 0.034 
419.7 0.058 509.7 0.026 
459.7 0.039 559.7 0.025 
499.7 0.053 579.7 0.029 
519.7 0.069 599.7 0.038 

619.7 0.053 
424.7 0.305 639.7 0.099 
459.7 0.270 
499.7 0.244 Propane(2)- 559.7 0.023 

n-pentane( 1 ) 619.7 0.032 
424.7 0.538 679.7 0.049 
459.7 0.490 739.7 0.080 
499.7 0.365 799.7 0.141 
519.7 0.277 

Activity coefficients can be found from the exact 
relations 

I (P') _ (anTgE* / RT) n'Yl - ----
anl T.P."" 

(28) 

(29) 

where nl is the number of moles of component 1 and nr 
is the total number of moles. 

Dilated van Laar model for binary liquid mixtures. 
Equations 26, 27, and 28 yield the classical van Laar 
equations (for unsymmetric normalization) as reported 
previously (25). Muirbrook (20) has shown that these 
equations, containing two adjustable parameters, are 
unsatisfactory for describing the properties of some sys­
tems which are at a temperature much above the critical 
temperature of the light component or near the critical 
temperature of the heavy component. In additiqn, 
Muirbrook found that the three-suffix Margules equa­
tions were also unsatisfactory (20). 

The probable reason for the failure of the classical 
van Laar treatment is due to van Laar's assumption 
that ql and q2 are constants independent of composition. 
The q's are parameters which reflect the cross sections, 
or sizes, or spheres of influence of the molecules; at 
conditions remote from critical, where the liquid molar 
volumes is close to a linear function of the mole fraction, 
it is reasonable to assume that the q's are composition 
independent. However, for a liquid mixture of a non­
condensable component 2 with a subcritical liquid 1, 
the molar volume of the mixture is a highly nonlinear 


